- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Solea, Eftychia (4)
-
Christou, Eliana (2)
-
Li, Bing (2)
-
Song, Jun (2)
-
Wang, Shanshan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 6, 2026
-
Solea, Eftychia; Christou, Eliana; Song, Jun (, Statistica Sinica)Functional data have received significant attention as they frequently appear in modern applications, such as functional magnetic resonance imaging (fMRI) and natural language processing. The infinite-dimensional nature of functional data makes it necessary to use dimension reduction techniques. Most existing techniques, however, rely on the covariance operator, which can be affected by heavy-tailed data and unusual observations. Therefore, in this paper, we consider a robust sliced inverse regression for multivariate elliptical functional data. For that reason, we introduce a new statistical linear operator, called the conditional spatial sign Kendall’s tau covariance operator, which can be seen as an extension of the multivariate Kendall’s tau to both the conditional and functional settings. The new operator is robust to heavy-tailed data and outliers, and hence can provide a robust estimate of the sufficient predictors. We also derive the convergence rates of the proposed estimators for both completely and partially observed data. Finally, we demonstrate the finite sample performance of our estimator using simulation examples and a real dataset based on fMRI.more » « less
-
Solea, Eftychia; Li, Bing (, Journal of the American Statistical Association)null (Ed.)
-
A Nonparametric Graphical Model for Functional Data With Application to Brain Networks Based on fMRILi, Bing; Solea, Eftychia (, Journal of the American Statistical Association)
An official website of the United States government
